Versican and fibrillin-1 form a major hyaluronan-binding complex in the ciliary body.
نویسندگان
چکیده
PURPOSE In this study, biochemistry, molecular biology, immunohistochemistry, and electron microscopy techniques were used to examine whether versican, which is known to bind fibrillin-1, interacts with fibrillin-1 in the ciliary body and vitreous, and whether the versican in this complex binds to hyaluronan. METHODS The new polyclonal antibodies against the amino and carboxyl termini of versican were raised and characterized. The mRNA expression levels of versican and fibrillin-1 were analyzed by RT-PCR and real-time PCR, and their protein levels were evaluated by Western blot analysis and immunohistochemistry. Isolation of versican bound to fibrillin-1-containing microfibrils from ciliary bodies was performed by extraction studies. Slot-blot analyses and rotary shadowing electron microscopy were applied to identify versican associated with fibrillin-1-containing microfibrils after gel filtration chromatography and density gradient centrifugation. RESULTS The newly prepared polyclonal antibodies recognized amino and carboxyl termini of chicken versican. Versican, principally V0 and V1, was found to be securely bound to fibrillin-1-containing microfibrils, forming a major hyaluronan-binding structure in the ciliary nonpigmented epithelium. In addition, Western blot analysis revealed two cleaved complexes, the carboxyl-terminal end of versican bound to fibrillin microfibrils and the amino terminal end of versican bound to hyaluronan in the vitreous body. CONCLUSIONS Fibrillin-1, versican, and hyaluronan form a unique complex in the ciliary nonpigmented epithelium, and two cleavage products of this complex were shown to exist in the vitreous body. This newly clarified fibrillin-versican-hyaluronan (FiVerHy) complex and its cleavage products may be indispensable for the physiological properties important to the ciliary body and vitreous.
منابع مشابه
Inhibition of Hyaluronan Synthesis Reduces Versican and Fibronectin Levels in Trabecular Meshwork Cells
Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is synthesized by three HA synthases (HAS). Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other EC...
متن کاملRole of versican V0/V1 and CD44 in the regulation of human melanoma cell behavior.
Versican is a hyaluronan-binding, large extracellular matrix chondroitin sulfate proteoglycan whose expression is increased in malignant melanoma. Binding to hyaluronan allows versican to indirectly interact with the hyaluronan cell surface receptor CD44. The aim of this work was to study the effect of silencing the large versican isoforms (V0 and V1) and CD44 in the SK-mel-131 human melanoma c...
متن کاملHuman eye development is characterized by coordinated expression of fibrillin isoforms.
PURPOSE Mutations in human fibrillin-1 and -2, which are major constituents of tissue microfibrils, can affect multiple ocular components, including the ciliary zonule, lens, drainage apparatus, cornea, and retina. However, the expression pattern of the three human fibrillins and an integral microfibrillar component, MAGP1, during human eye development is not known. METHODS We analyzed sectio...
متن کاملFibrillin-1 Interactions with Heparin: Implications for Microfibril and Elastic Fibre Assembly *
Fibrillin-1 assembly into microfibrils and elastic fiber formation involve interactions with glycosaminoglycans. We have used BIAcore technology to investigate fibrillin-1 interactions with heparin, and with heparin saccharides that are analogous to S-domains of heparan sulfate. We have identified four high affinity heparin binding sites on fibrillin-1, localized three of these sites, and defin...
متن کاملThe Effect of Ultraviolet B on Fibrillin-1 and Fibrillin-2 in Human Non-pigmented Ciliary Epithelial Cells In Vitro
The ciliary zonules link the lens to the ciliary body in the eye, controlling the thickness of the lens for focusing through their characteristic elasticity. The ciliary zonules are composed of oxytalan fibers. Physiological or pathological damage to the ciliary zonules, including exposure to ultraviolet (UV)-A and UV-B components, can lead to lens dislocation. However, no studies have shown wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 49 7 شماره
صفحات -
تاریخ انتشار 2008